
154

Software Multiplexing: Share Your Libraries and Statically
Link Them Too

WILL DIETZ, University of Illinois at Urbana-Champaign, USA

VIKRAM ADVE, University of Illinois at Urbana-Champaign, USA

We describe a compiler strategy we call łSoftware Multiplexingž that achieves many benefits of both statically

linked and dynamically linked libraries, and adds some additional advantages. Specifically, it achieves the code

size benefits of dynamically linked libraries while eliminating the major disadvantages: unexpected failures

due to missing dependences, slow startup times, reduced execution performance due to indirect references to

globals, and the potential for security vulnerabilities. We design Software Multiplexing so that it works even

in the common case where application build systems support only dynamic and not static linking; we have

automatically built thousands of Linux software packages in this way. Software Multiplexing combines two

ideas: Automatic Multicall, i.e., where multiple independent programs are automatically merged into a single

executable, and Static Linking of Shared Libraries, which works by linking an IR-level version of application

code and all its libraries, even if the libraries are normally compiled as shared, before native code generation.

The benefits are achieved primarily through deduplication of libraries across the multiplexed programs, while

using static linking, and secondly through more effective unused code elimination for statically linked shared

libraries. Compared with equivalent dynamically linked programs, allmux-optimized programs start more

quickly and even have slightly lower memory usage and total disk size. Compared with equivalent statically

linked programs, allmux-optimized programs aremuch smaller in both aggregate size and memory usage, and

have similar startup times and execution performance. We have implemented Software Multiplexing in a tool

called allmux, part of the open-source ALLVM project. Example results show that when the LLVM Compiler

Infrastructure is optimized using allmux, the resulting binaries and libraries are 18.3% smaller and 30% faster

than the default production version. For 74 other packages containing 2ś166 programs each, multiplexing

each package into one static binary reduces the aggregate package size by 39% (geometric mean) compared

with dynamic linking.

CCS Concepts: · Software and its engineering→ Compilers; General programming languages;

Additional Key Words and Phrases: Code deduplication, Link-Time Optimization, LTO, LLVM, IR

ACM Reference Format:

Will Dietz and Vikram Adve. 2018. Software Multiplexing: Share Your Libraries and Statically Link Them Too.

Proc. ACM Program. Lang. 2, OOPSLA, Article 154 (November 2018), 26 pages. https://doi.org/10.1145/3276524

1 INTRODUCTION

On most modern desktop and server systems, the vast majority of applications are dynamically
linked, because it reduces network, disk and memory consumption for libraries that are shared
across applications. Dynamic linking, however, has significant disadvantages [Agrawal et al. 2015;
Collberg et al. 2005; Orr et al. 1993]. Application installation sometimes fails because necessary
libraries are missing from the end-user’s environment. Applications are slower to start because
they must discover what code to use, and resolve memory layouts and indirection tables. Execution

Authors’ addresses: Will Dietz, University of Illinois at Urbana-Champaign, USA, wdietz2@illinois.edu; Vikram Adve,

University of Illinois at Urbana-Champaign, USA, vadve@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART154

https://doi.org/10.1145/3276524

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3276524
https://doi.org/10.1145/3276524

154:2 Will Dietz and Vikram Adve

performance is also negatively impacted by introducing indirection on external references. Even
compiler optimization is impacted by preventing cross-module optimizations that are possible when
statically linking. Additionally, the ability to load executable code at run-time creates exploitable
vulnerabilities; e.g., the recently discovered Samba exploit allows a malicious remote client (with
access to a writable share) to cause the server to dynamically load and execute a shared library
containing arbitrary code [MITRE Corporation 2017].
In this paper, we describe a compiler strategy we call łSoftware Multiplexingž that combines a

predetermined set of applications into a single statically linked executable, while achieving the
code size benefits of dynamically linked libraries and eliminating all the above disadvantages. Put
another way, Software Multiplexing achieves many benefits of both statically and dynamically
linked libraries, and adds some additional advantages. Briefly, the executables shipped this way
are statically linked and fully self-contained (if all components are included when linking); are
much smaller than the equivalent statically linked versions in aggregate, and also smaller than the
equivalent dynamically linked versions in aggregate; start up immediately because no load-time
overhead is incurred; execute without run-time indirection overheads because they are statically
linked; are fully amenable to link-time optimization across all application/library boundaries; and
avoid vulnerabilities due to dynamic loading of library components (as long as all libraries are
included via static linking). Moreover, these programs enable optimizations across multiple distinct

applications, e.g., when such applications may share code not captured by shared libraries (we
briefly describe this new opportunity, but exploiting it and evaluating the benefits are subjects for
future work).
A key part of the technical contribution is enabling Software Multiplexing to work without

requiring a major rewrite of existing application build systems, which would be impractical. In
particular, the build systems of most applications are designed for dynamic linking, while a few
allow more flexibility for individual libraries. Rewriting such build systems to enable static linking
if they don’t already support it can be onerous and even impractical. Software Multiplexing works
transparently without requiring modifications to the build system in most cases; we have built
thousands of Linux packages using Software Multiplexing, with only a small number requiring
minor build system changes.

1.1 Motivating Example

As a concrete example of the size vs. performance tradeoffs, consider Figure 1 and Table 1 which
show size and performance of the set of executables and libraries comprising the LLVM compiler
system when built using static vs using shared libraries. The performance metric used is the total
time to compile the full LLVM 4.0.1 system from source. Note that although this example is itself
a compiler system, the size and performance impacts should be similar to those in other large
systems (at least those written using C++).
Using shared libraries results in a much smaller footprint overall, but negatively impacts

performance by 36%, compared with Static. LLVM developers prefer the statically linked variants,
while OS distributions and users build using shared libraries.

To mitigate the overheads of LLVM’s many libraries, they provide a special option that combines
all the libraries into a single shared libLLVM.so which is the recommended way to build LLVM
suited for dynamic linking. This is much faster than using separate shared libraries, but is also
about 2.5x larger.

Our approach (Allmux) combines all the executables and libraries of LLVM into one single stati-
cally linked executable, which is significantly smaller than all the other versions and significantly
faster than both the Shared versions (and as fast as the Static one). In particular, the Allmux version

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:3

Shared (libLLVM) Shared (lib*) Static Allmux
Single Shared Library Many Shared Libraries Statically Linked Software Multiplexing

Build Configuration of Host Compiler

1354.1
1675.0

1229.7 1183.6

+10.1% +36.2% +0.0% -3.7%

Fig. 1. Seconds to compile LLVM 4.0.1

Table 1. Sizes of LLVM Binaries in various build configurations, including Clang and lld.

Build Config Bins Libs Total Sharing

Static (Default) 590M 2.1M 593M None

Shared (libLLVM) 231M 38M 268M Coarse

Shared (lib*) 11M 93M 104M Fine

Allmux 85M 0M 85M Best

is 1.2x smaller and 30% faster than the Shared version, or 2.7x smaller and 13% faster than the
libLLVM version preferred by distributions.

In other words, Allmux is significantly better than either static or dynamic linking, without any
significant disadvantages.

1.2 Existing Solutions

These observations are not new: the software community has attempted several approaches to
balance these tradeoffs, although none of them are optimal, and the best ones require extensive
manual effort or high cost, or both. For example, Google is known to configure and build software
almost entirely statically [Moore 2017] essentially choosing to pay the cost of higher storage
and memory to obtain better performance and reliability. LLVM, as described above, provides a
unified library, libLLVM, but this is neither as fast as static linking nor as small as separate dynamic
libraries.
The most explicit solution, Slinky [Collberg et al. 2005], uses SHA-1 digests of code pages to

identify identical pages across statically linked executables. It modifies the Linux kernel and uses a
novel executable format to identify shared code, and to transmit, store and load it into memory only
once. Slinky executables are larger than dynamically linked executables because of the additional
hashes, they incur some load-time penalty, and the authors report a 20% storage space increase
and a 34% network bandwidth increase. They also do not enable compiler optimization across
application and library boundaries. Software Multiplexing is superior in all these ways, and avoids
requiring OS kernel changes, but does require explicit (though simple) compiler support, and also
requires identifying the sets of applications that should be multiplexed together. (Combining Sinky
with Sofware Multiplexing would additionally enable redundant code pages across the multiplexed
sets of applications, while preserving the extra benefits of Sofware Multiplexing within each set.)

1.3 Overview of Software Multiplexing

Software Multiplexing is intended to be used for software systems, packages, or sets of packages
that are expected to be installed on a system, and which share one or more libraries of code. Some
examples include the set of programs in a compiler (like LLVM or GCC); applications built using a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:4 Will Dietz and Vikram Adve

common windowing framework like libQtGui; collections of applications with common themes,
such as editors, shells, or window managers; separate versions of the same application or library,
because different users on a system may use different versions; etc. The bottom half of Figure 9 in
an Appendix shows a large number of software packages containing multiple applications (ranging
from 2 to 166 programs per package), yielding a geometric mean 39.2% reduction in aggregate
binary size for these packages, compared with dynamically linking. Most importantly, while the
benefits of multiplexing depend on the chosen set of applications to multiplex, every case we have

examined ś including a very large number of widely used software packages ś shows benefits, and
these are often substantial.

The Software Multiplexing compiler transformation has two parts:

(1) Automatic Multicall: This is a conceptually simple transform that has to deal with subtle but
well-understood correctness issues. A multicall program combines multiple programs into one
executable, and dispatches them based on the name used to invoke the program, or a predefined
argument. Some packages, e.g., Busybox or coreutils, are designed to do this manually, but otherwise,
introducing this feature retroactively is complicated and inflexible. Our work automates this step: a
compiler pass takes N application programs as input and combines them into a single combined
multicall program. Carrying out these steps after individual executables (e.g., ELF format binaries)
have been generated can be quite complex; we instead export the compiler’s internal representation
(IR) (this is usually a feature in compilers that support Link-time Optimization) for all applications
into individual files, merge the files into a single IR file, and use a new compiler pass (a simple
IR-to-IR transformation) to add a new main function that dispatches to individual program entry
points based on the name used to invoke the program. The pass produces a single merged IR as the
output. Note that this is purely a compiler transform: no link editing occurs in this step.

(2) Statically shared libraries: The second part of the transform takes the multicall program and
as many of the necessary libraries as possible ś static and dynamic libraries ś and links them
into a single program. If all the applications’ build systems are designed to use static linking,
this step would be straightforward, but of course this is rarely true. Unfortunately, dynamically
linked libraries have substantially different semantics from statically linked ones; a message on the
binutils1 mailing list asserts that simply linking in machine code for dynamic libraries using static
linking was not just difficult but łisn’t a sane ideaž because the information needed to do so is
łirretrievably gonež at this stage [Schwab 2005]. These problems are almost entirely avoided before
code generation, and so we solve this problem with a compiler-based strategy: we export every
component in the form of the compiler’s IR, before code generation, including the multicall program
and all necessary libraries (although some libraries could be omitted, if necessary), then link the
IR versions of all components together, then generate native code for the fully linked multicall
program.

Software Multiplexing achieves two kinds of code reduction. Like dynamic linking, it eliminates
library duplication between (a predetermined set of) applications that are multiplexed into a single
binary. Like static linking, it also eliminates unreferenced functions and global variables, which
is not achieved during dynamic linking. This is why we are able to achieve binary sizes that are
smaller than either statically linked or dynamically linked binaries (in aggregate) for any given set
of applications.

Limitations: Multiplexing is not apppropriate for all software, and by its nature (statically linking
all your code together) is not suited for situations where what code is executed constantly changes.

1binutils is used by all known Linux distributions and contains the implementations for the linkers most commonly used

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:5

For example, one would not want to try to multiplex the dynamic loader itself as the entire purpose
is to load an unknown program upon request. There are three specific limitations to multiplexing,
at present. First, the benefits of multiplexing are limited to a predetermined set of applications
combined together, unlike either shared libraries or Slinky, both of which share code across arbitrary
applications on an end-user’s system. As noted earlier, combining multiplexing with Slinky would
get both kinds of benefits. As a direct consequence, sets of applications to multiplex must be
predetermined, cannot be varied from one end-user to another, and adding new applications to
an existing set is difficult (short of replacing the entire multiplexed binary for the set). Second,
multiplexing makes it difficult or more cumbersome to update software by upgrading or patching
dynamic libraries. Third, the current design of multiplexing disallows introspection techniques like
the use of dlopen and dlsym. We discuss these further in Section 6.1.

1.4 Implementation and Results

We have implemented Software Multiplexing in the LLVM compiler infrastructure as a tool called
allmux. This tool is part of the open-source ALLVM project available on GitHub2. Allmux allows
arbitrary sets of applications, along with their library dependencies, to be merged into a single
statically linked executable. The basic usage looks like: allmux arora djview -o combined. The
output allexe (essentially, a zip archive of one or more LLVM bitcode files) can be executed using
either AOT or JIT compilation using ALLVM tools.
Our results can be summarized as follows: For any particular set of one or more applications,

allmux results in a single statically linked binary that has the following properties, compared
with the same set of applications using either conventional shared libraries or statically linked
individually:

Disk ≤ min(static, shared) (1)

Memory ≤ min(static, shared) (2)

Run time ≤ min(static, shared) (3)

Startup latency ≈ static ≤ shared (4)

The results in Figure 1 and Table 1, above, illustrate all four of these conclusions for LLVM. As
another example, for a set of 10 applications using Qt, the disk size of the multiplexed version is
17% smaller than shared and 66% smaller than static, in aggregate, and the memory usage (when all
10 run concurrently) is 40% less than shared and 63% less than static. A number of other examples
are presented in Section 5 and in Appendix A.2.
Our research contributions are the following:

• We present a novel compiler strategy, łSoftware Multiplexing,ž that achieves many benefits
of both statically linked and dynamically linked libraries.
• We show how to make Software Multiplexing automatic, even for programs that do not
support static linking, by exporting and linking programs and all libraries in terms of the
compiler IR.
• We implement Software Multiplexing in the LLVMCompiler infrastructure as the tool allmux.
We use allmux to create self-contained fully static executables for a large variety of software
and collections of software.

2https://github.com/allvm/allvm-tools

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

https://github.com/allvm/allvm-tools

154:6 Will Dietz and Vikram Adve

• We evaluate Software Multiplexing and find it creates programs that take less space and use
less memory than both statically and dynamically linked versions, start and execute faster
than dynamic versions (matching static versions), and are more secure and portable.
• We share our tools and infrastructure with the community as part of the open-source ALLVM
project.

2 BACKGROUND

2.1 Multicall

A few program collections today, e.g., busybox and coreutils, are (optionally) organized as multicall
programs (defined in Section 1). Busybox is organized as a collection of optional łappletsž that are
built into a single multicall binary. To execute one of the applets, one of two methods can be used:
directly invoke the multicall binary giving the name of the applet as the first argument, or more
commonly indirectly invoking the multicall binary using symlinks or hardlinks. While busybox
supports building applets as separate binaries, this is not encouraged and, in fact, is accomplished
with a script that iterates through selected applets and builds a one-applet busybox for each.

On the other hand, coreutils is organized in the more conventional manner: each utility provided
has a unique main defined in a source file with matching name. Coreutils can optionally built
into a single multicall binary, which is accomplished by extra build system support added by
the developers that leverages application knowledge and uses the preprocessor to transform the
program and insert declarations.

In both cases the source code organization and build system reflect the expected use case, using
ad hoc techniques to build in either the multicall or separate configuration. For self-contained
projects designed in this way from the start, the manual approach works well, but larger projects
and their dependencies quickly become too complex to repurpose their build systems using these
methods. Moreover, independently developed applications cannot be multiplexed in this way.
As a less similar example, compilers like GCC and Clang employ a limited form of multicall:

each of these compilers (specifically, the driver program of each) is a single program that invokes
different code paths based on the program name used (e.g., gcc vs. g++). Clang goes so far as to allow
the invocation name to indicate the desired target triplet, essentially converting the invocation
name into an argument. These driver programs go beyond ordinary multicall: they add additional
semantics based on built-in knowledge of the intent of the selected program names and options.

In our work, we automate the process of constructing a multicall program from an arbitrary set

of separate programs and their libraries, without requiring any changes to the individual programs
or build systems, and without adding any new semantics to any of the individual programs.

2.2 Compiler Requirements and ALLVM

The Software Multiplexing approach presented in this paper depends on two compiler capabilities:

(1) Exporting IR: The ability to export a self-contained IR for a source file, application or library.
(2) IR linking: The ability to link multiple IR modules into a single one, either an application

or a library.

These capabilities are available in many production compilers today, including LLVM, GCC, Intel’s
ICC, IBM’s XL compiler family, and others, because these capabilities are also the key ingredients
for link-time optimization (LTO), which is widely available in production compilers. We use the
LLVM IR [Lattner and Adve 2004] as the basis for our work. Note that the final statically-linked
binaries created by allmux (and used in our evaluation) are ordinary ELF executables suitable for
execution on any reasonably-modern Linux system.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:7

For this work, we also use a file format called an allexe, which is essentially just an ordinary
zip archive of LLVM IR modules, e.g., a single shared library, or an application and some or all of
its libraries, or (after multiplexing) multiple applications and their libraries.
The allexe file format and tools that operate on it have been developed as part of a broader

project called ALLVM. ALLVM [Adve et al. 2016] is a strategy for system construction in which
all (native) software components are represented in a virtual instruction set (in our case, LLVM
IR) instead of native machine code. In particular, the allmux tool was developed as an exploration
of how code sharing could be made possible in a way that was visible at the LLVM IR level and
be naturally analyzed and optimized by compiler techniques across non-traditional boundaries,
including across application/shared library boundaries, and across multiple programs. Both these

capabilities are made possible by allmux.

In ALLVM, we have extended the LLVM tools (the IR linker, back-end static code generator, JIT
compiler, etc.) to work with the allexe file format. We only use the linker and code generator
in this work. The ALLVM linker, in particular, merges a multi-module allexe into an equivalent
single-module allexe.
It is important to note that the use of the .allexe format and the ALLVM toolchain have

negligible influence on the performance results presented here: the file format and the ALLVM
tools and are essentially a repackaging of LLVM IR and LLVM tools for greater convenience and
reproducibility, and flexibility, with no direct performance impact.

3 GENERATING MULTICALL PROGRAMS

Algorithm 1 Basic Allmux

1: function MuxBasic(A) ▷ Multiplex set of allexe programs A

2: M ←GenDispatchMain(A) ▷ Described in Section 3.1.1

3: for a ∈ A do

4: N ← Name(a) ▷ unique invocation name for a (e.g. bash)

5: a′ ← alltogether(a) ▷ Link components in a into a single component; return as allexe a′

6: Rename entrypoint in a′ to main_<N > ▷ (e.g. main_bash)

7: Generate functions ctors_<N >, dtors_<N > ▷ make static constructors/destructors explicit

8: end for

9: return NewAllexe(M , a′1, a
′
2, . . .)

10: end function

Combining multiple programs into a single multicall executable is, at a high-level, a simple
transformation:

• generate new entry point that runs the selected program;
• transform each input program to use a uniquely named entry point, and execute only its
own constructors and destructors; and
• merge programs into a single program, binding each program to correct dispatch entry in
the new main.

A key addition is to use only one copy of each library in the final program, which requires a less
obvious strategy. We first describe the simpler version, łAllmux Basic,ž which does not deduplicate
libraries (Section 3.1) and then the full algorithm (Section 3.2).

3.1 Allmux Basic

The basic ⁀allmux transformation is presented in Algorithm 1, and a graphical overview is shown in
Figure 2.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:8 Will Dietz and Vikram Adve

Inputs

A.allexe:

mainA libX libY

B.allexe:

mainB libX libZ

AB-muxed.allexe:

main_dispatch
(mainA~libX~libY)

(mainB~libX~libZ)

Allmux-basic

Fig. 2. Allmux Basic

3.1.1 Generating Dispatch Main. The entry point is a generated function that determines which
program is being invoked by comparing the filename portion of argv[0] with the names of
supported programs, dispatching when a match is found. Once a match is found, the static
constructors are executed by a call to the generated ctors_<N> and the static destructors are
registered for execution by using cxa_atexit3.

It is an error to attempt to use allmux on programs with the same basename, since the dispatch
main would not be able to distinguish which program was invoked. This has not proven to be a
problem in our experience and is easily avoided if an alternative dispatch mechanism was desired.
Matching is implemented as a sequence of calls to strncmp but any appropriate lookup technique
may be used.

3.1.2 Static Constructors and Destructors. Static constructor and destructor functions are required
by some programs such as those using certain C++ features or by manually marking functions
with special attributes in C. Static constructors must be executed before main and destructors
should be executed on successful program termination or normal exit. Normally these are handled
through the use of either .init_array or .ctors sections created by the linker and used by the
libc implementation.
When multiplexing, care must be taken to only run the constructors and destructors of the

program selected for execution. In an LLVM module, constructors and destructors are stored
in special arrays of function pointers called llvm.global_ctors and llvm.global_dtors. The
allmux Basic tool replaces these arrays with functions (two per input program) that invoke each
listed function in the appropriate order and exports those functions as ctors_<N> and dtors_<N>

making their execution explicit for use by the generated dispatch main once a program has been
selected.

3.1.3 Merging and Binding. After the above steps, the transformed modules undergo a final
modification before being linked together: All symbols are internalized other than main, ctors_<N>,
and dtors_<N> which are explicitly exported (there are programs that give their main hidden
visibility!). This ensures no conflicts or interference when linking, and is not a problem since
symbol names are not significant at this point as ALLVM programs are not allowed use of dlopen

3in musl this is the same machinery as atexit

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:9

or dlsym (this limitation is discussed further in Section 6.1). Unwinding still works properly using
eh_frame information as usual on Linux, as does dl_iterate_phdr.

3.1.4 Compiling and Running the Multiplexed Program. The multiplexed allexe can be built into
a fully static binary using a standard LLVM native code generator. The resulting binary can be
deployed to any Linux machine. Symbolic or hard links should be created for each multiplexed
input program, usually in a directory that contains other files the program may require such as
configuration or data.

3.1.5 Discussion. The basic allmux algorithm automatically creates multicall programs that
dispatch between effectively statically linked versions of each program. The transform is straight-
forward and the basic behavior of each input program is clearly modeled in the result, making
it straightforward to reason about the preservation of program behavior. A few low-level details
present in some programs require attention, such as use of /proc/self/exe, but few programs
overly rely on such non-portable functionality and when they do they can be addressed as part
of porting to the ALLVM program model. In our experience this has worked very well, and we
demonstrate a number of examples of this success in the evaluation (Section 5).

The automatic multicall is complete, but there is a problem: duplicated libraries like libX produce
multiple copies of code and data in the resulting allexe. Current optimizations in LLVM are unable
to identify and eliminate this code duplication, because they cannot identify equivalent functions
(we discuss this further in Section 6.1). Our evaluation in Section 5.8 shows the impact of this code
duplication on resulting executable sizes.

3.2 Multiplexing with Library Deduplication

Algorithm 2 Allmux w/Library Deduplication

1: function MuxLibDedup(A) ▷ Multiplex set of allexe programs A

2: M ←GenDispatchMainLibs(A) ▷ Described in Section 3.2.2

3: L ← ∅

4: for a ∈ A do

5: N ← Name(a) ▷ unique invocation name for a (e.g. bash)

6: {m′, La } ← a ▷ modulem′ contains entry point, La contains set of libraries

7: Rename entrypoint inm′ to main_<N > ▷ (e.g. main_bash)

8: Generate functions ctors_<N >, dtors_<N > intom′ ▷ make static constructors/destructors explicit

9: L ← L ∪ La ▷ Track set of unique libraries used

10: end for

11: for l ∈ L do

12: Nl ← genLabel(a) ▷ unique identifier for library l (used by generated main)

13: Generate functions ctors_<Nl >, dtors_<Nl > into l ▷ make static constructors/destructors explicit

14: end for

15: P← NewAllexe(M ,m′1,m
′
2, . . . ,m

′
n , l1, l2, . . . , lk) ▷ n entry points with k unique libraries

16: return Alltogether(P) ▷ Statically link all components into a single bitcode module

17: end function

To address the code size increase limitation discussed above, we extend the basic allmux algorithm
to treat the libraries of input programs specially and to avoid duplication of exact copies in the
common case where a shared library is actually shared. The modified algorithm is presented as
Algorithm 2 and an updated graphical overview is shown in Figure 3.

3.2.1 Key Modifications. There are two key modifications to the earlier algorithm. First, step 5
of the basic algorithm ran alltogether on each input allexe individually to link the application
and all the libraries into a statically linked IR module, before adding it to the output allexe. The

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:10 Will Dietz and Vikram Adve

Inputs

A.allexe:

mainA libX libY

B.allexe:

mainB libX libZ

Allmux (w/lib dedup)

AB-muxed.allexe:

main_dispatch
mainA

mainB
libX

libY

libZ

Fig. 3. Allmux with Library Deduplication

Only one copy of each library is emitted into the final allexe. Compare with Figure 2 where two
copies of libX are included.

revised algorithm cannot do that because it needs to identify libraries shared between the input
programs. We therefore skip the linking step on individual programs, and instead track the set of
unique libraries used by the various programs. These libraries are emitted into a combined allexe,
along with all the modules with the renamed entry points (step 15). We now run alltogether on
the resulting allexe to generate a fully statically linked IR module, and return the resulting allexe,
which contains a single module (like the one returned by the basic algorithm).

3.2.2 Generating Dispatch Main with Libraries. The second modification is in generating the
dispatch main and handling constructors and destructors. Construction of main is modified
slightly to handle the static constructors and destructors for the libraries (and only the libraries)
included in the selected program. This is handled in much the same way as the constructors and
destructors are handled already but in addition to invoking ctors_<N> and registering dtors_<N>

the constructors and destructors of the libraries are also invoked and registered.

4 STATICALLY LINKING SHARED LIBRARIES

A key pragmatic obstacle to Software Multiplexing is that most programs we would like to build
this way are not easily obtainable in statically linked forms. The generation of shared libraries
and dynamically linking against them is the prevailing and explicitly preferred way to build Linux
software [openSUSE 2017]. For example, we were surprised to find that no Linux distribution offers
fully static or even mostly static executables for non-trivial applications such as git or vim.

This is a significant problem for the application of software multiplexing to commodity software,
and we note this is also a significant barrier faced by the compiler community to the use of compiler-
based cross-module tools on non-trivial applications. To address this general problem, we propose a
simple butÐas we show, in part, with our evaluation in Section 5Ð surprisingly effective approach
that enables us to statically link many (but not all, see Section 6.1) applications consisting of shared
libraries.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:11

4.1 Insight

The key insight is a perhaps deceptively simple one and is driven by our own experiences with
thousands of Linux applications: despite the possibility of relying on subtle linking semantics or
obscure linker features, in general the vast majority of programs only use the fundamental, common
features of symbol resolution and relocation.

Embracing this, we set out to try linking of shared libraries at the IR level using simple symbol
resolution rules (relocation is irrelevant with IR because all references can remain symbolic). Doing
so is far easier at the IR level than after generating binary code, which makes even simple tasks
such as łwhat parts of this are codež famously difficult to answer [Balakrishnan and Reps 2010;
Meng and Miller 2016].
This approach proved much more effective in practice than we expected, only requiring a few

minor details be addressed before being sufficient to support thousands of software packages. The
most important detail to handle is that of symbol visibility, which we discuss next.

4.2 Visibility

The use of symbol visibility is important in many applications, allowing shared libraries to internally
use symbols without exporting them globally. Beyond good interface hygiene, this can prevent
linking problems or runtime errors when multiple objects use the same functions and allows
programmers to freely name functions and globals without concern that someone somewhere else
might also want to name their function, for example, łprint_usage()”. Furthermore visibility
affects whether the symbol can be preempted by a definition elsewhere or if uses can be assumed
to resolve to the local definition [Drepper 2011], which can be important for behavioral and
performance reasons.

The scope of a symbol’s visibility is at the level of the shared object that defines it, which means
it must be addressed when linking the code statically. This behavior is handled when linking the
main executable of an allexe with any included shared libraries: we use a straightforward pass to
identify hidden definitions and convert them to have internal linkage.

4.3 Other Details

Additional consideration may be given to support some interactions involving łvague linkagež
(COMDAT or weak symbols), which is used by many C++ implementations to provide a number of
features such as the one-definition rule (ODR). Similarly thread-local-storage (TLS) is an important
feature for some applications. Neither of these have required taking significant measures to support
or emulate, but this has only been tested indirectly, not exhaustively.

5 EVALUATION

5.1 Goals and Software Variants

We claimed in the Introduction that, for any particular łdeploymentž (1 or more programs), allmux
results in a single statically linked binary that has specific advantages when compared to the
equivalent software using conventional shared libraries or statically linked individually. We evaluate
these claims here, through a variety of software and use cases suitable for desktop, server, and
developer environments.

For these experiments, we compare up to five different versions of each set of software applica-
tions. When statically linking, we use link-time optimization (LTO) to provide a better baseline.

SharedśMusl: (aka, Shared or Dynamic) Each application is built to link with normal shared
libraries, using the LLVM toolchain: clang, libc++, libc++abi, compiler-rt, and musl libc

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:12 Will Dietz and Vikram Adve

(which is used by the ALLVM tools, and so gives an apples-to-apples comparison against the
Allmux versions).

SharedśGlibc: Same as above, but with GNU libc (since this is more widely used than Musl
libc).

Static+LTO: (aka, Static) The same software configuration as SharedśMusl, but with all compo-
nents compiled into LLVM IR, then linked statically, optimized using LTO, and then compiled
into native code, yielding a fully statically linked standalone executable for the application.

Allmux-NoOpt: (aka, NoOpt) The executable for a set of applications created by Algorithm 2,
Allmux with Library Deduplication, and no subsequent optimization. Individual applications
(represented by the input allexes) are linked (but not optimized using LTO), before running
the allmux pass and native code generation.

Allmux-Opt: (aka, Opt or Allmux) Same as Allmux-NoOpt, except that LTO is run on all the
applications and (deduplicated) linked libraries collectively, after running the allmux pass
and before native code generation.

We are unable to compare directly against the state-of-the-art alternative, Slinky[Collberg et al.
2005] (which is available on their website[Collberg et al. 2004]), because we couldn’t use it on
any program we tried to feed it. We have attempted but so far failed to debug the exact cause.
Qualitative comparisons are discussed briefly in Section 5.9.

5.2 Workloads Used

Not all questions are reasonable for all software: runtime performance is not easily quantified in a
useful way for applications such as a torrent client, and memory usage is most naturally measured
for long-running and sometimes concurrently executing applications. Accordingly we’ve selected
collections of programs and used them to answer the questions that best match the common usage.
A summary of these applications and the questions answered by each is given below. The Claim
numbers refer to claims (1)ś(4) in Section 1.

Binary Size (Claim 1→ Sections 5.4.2 and 5.8). : All collections of software are suited for reporting
their disk usage, although the appropriate comparisons vary depending on the way the software is
commonly deployed.

Memory (Claim 2→ Section 5.4.1): To explore the memory usage of multiplexed applications we
use a collection of graphical programs a łtypicalž user might execute concurrently (Section 5.4.1).
For these experiments memory usage reported is Proportional Set Size (PSS), which accounts for
memory shared by processes and is calculated by the kernel using the following definition [PSS
2016]:

M(p) = Set of memory regions mapped into process p

PSS(p) =
∑

m∈M (p)

size(m)

processes usingm

Runtime Performance (Claim 3→ Section 5.5): We used compilation of LLVM 4.0.1 with Clang as
a reasonable aggregate benchmark likely influenced by a combination of startup latency, memory
usage, and effectiveness of cross-module optimization.

Startup Latency (Claim 4→ Section 5.6): A handful of applications were selected and startup
latency was measured with and without background I/O loads, methodology adopted from Phoronix

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:13

0 B

20MB

40MB

60MB

80MB

100MB

120MB

140MB

160MB

180MB

 1 2 3 4 5 6 7 8 9 10

M
e

m
o

ry
 U

sa
g

e
 (

a
cc

o
u

n
ti

n
g

 f
o

r
S

h
a

ri
n

g
)

Number of Qt Applications Running

Shared - glibc

Shared - musl

Allmux (10-in-1)

Static+LTO

0 B

50MB

100MB

150MB

200MB

250MB

300MB

 1 2 3 4 5 6 7 8 9 10
C

o
d

e
 S

iz
e

 o
n

 D
is

k

Number of Qt Applications

Shared - glibc

Shared - musl

Allmux (10-in-1)

Static+LTO

Fig. 4. Memory Usage and Disk Usage for Increasing Number of Qt Applications

Table 2. Description of Qt Applications

App Name Description

arora Cross-platform browser using QtWebKit

djview A portable DjVu viewer

qbittorrent Free Software alternative to µtorrent

qgit Graphical Front-end to Git

qpdfview A tabbed document viewer

qscreenshot Screenshot creation and editing

qtikz Editor for the TikZ language

qvim Qt GUI for Vim

snowman Decompiler

wpa_gui GUI for secure wireless networks

Test Suite’s łApplication Start-Up Time 1.0.0ž modified to run our executables (Section 5.6)4. The
benchmark was conducted for 10 iterations with consistent results.

5.3 Experimental Hardware

Performance and startup latency experiments (Section 5.6 and Figure 1) were conducted on a Dell
XPS 15 9560 laptop with an i7-7700HQ processor (6M cache), 16 GB DDR4, and a 512GB NVMe
SSD. Turboboost was disabled to obtain consistent behavior across runs, and hyperthreading was
enabled. The machine was running NixOS 17.09 (linux).

5.4 Qt Applications

Graphical programs are classic examples of where shared libraries shine: many users will run a
number of applications that all use the same toolkits and X11 support libraries.We built 10 Qt[Jasmin
2008] applications in the various configurations described in Section 5.1; the applications chosen

4Test suite 7.4.0m2 http://www.phoronix-test-suite.com/download.php?file=development/ and using the benchmark data

http://phoronix-test-suite.com/benchmark-files/S-20170810.zip

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

http://www.phoronix-test-suite.com/download.php?file=development/
http://phoronix-test-suite.com/benchmark-files/S-20170810.zip

154:14 Will Dietz and Vikram Adve

and a brief description of each is given in Table 2. These were used to measure the effectiveness of
software multiplexing in terms of reduced footprint, including both memory and disk usage.

5.4.1 Memory Usage. To measure memory usage across processes sharing code (Claim 2), we
measured the PSS[PSS 2016] of programs after launching one application, after launching two
applications, and so on, with each group running in a single virtual machine with no other programs
other than the X server. The X server was not included in the PSS items used. (This may cause the
PSS numbers shown for Shared libraries to be lower than they should be, i.e., biasing the results in
their favor; this would happen if the X server and the applications shared any libraries.) Results are
presented in Figure 4, which displays the results of 5 runs with error bars (due to low variance they
are not visible).

As can be seen in Figure 4 the allmux variant consistently uses significantly less memory than
the next best configuration ś SharedśMusl ś despite containing functionality for all 10 applications
in a single binary. When using configurations that share memory across processes the growth
is sublinear, but when launching applications that are individually statically linked, the memory
usage is roughly linear (as expected).

Note that when running a single application, the static configuration uses less memory than the
shared library configurations, which matches the allmux configuration.
allmux consistently uses no more than any other configuration, and often much less, e.g.,

about 40% less than the next best (SharedśMusl) when running all 10 applications, and just 1/4 of
Static+LTO.

5.4.2 Disk Size. For each configuration we recorded the number of bytes on disk required to store
the binary code (program and closure of library dependencies) for the first application, the first two
applications, and so on ś this was done to facilitate comparison with memory usage for concurrent
execution of the processes as evaluated above. Note that the allmux series has a fixed size since
the binary is fixed and includes all 10 applications. As a result, for a small number of applications,
the allmux version is larger than the shared and static configurations. We consider this disk size
increase a relatively small cost to pay for the fairly large gains in memory consumption.

5.5 Compiler Performance

We use Clang running time (when compiling LLVM 4.0.1) as a metric of software performance,
since Clang is modern and widely used software, its performance is important to many application
teams, and its use of libraries is carefully designed and flexible. The results of Clang compiling
LLVM 4.0.1 were shown in Figure 1 in Section 1. The Clang/LLVM software is organized as a
set of libraries that can be linked into a number of programs (tools), such as the Clang program
itself. Alternatively, all libraries can be prelinked into one shared library (libLLVM), which is then
linked into the separate programs. Shared (lib*) and Shared (libLLVM) show the performance of
Clang linked in these two ways, both using dynamic linking. Static and Allmux correspond to the
Static-LTO and Allmux-Opt versions defined above.

The results show that both shared library versions are much slower than the two static versions,
with libLLVM yielding a large speedup because of the prelinking. More importantly, Allmux

matches the statically linked version and strongly outperforming the two dynamically linked
versions. Moreover, Table 1 in Section 1 showed that Allmux is far smaller than Static and also
smaller than both Shared versions: the best of both worlds.

5.6 Startup Latency vs I/O Load

The performance results for compiling LLVM 4.0.1 shown in Figure 1 are caused, to a substantial
extent, by lower startup latency of the allmux version of Clang. This is because Clang must be

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:15

Table 3. Startup Latency of Applications (seconds)

IO Load App Static Dynamic Allmux-Opt

None clang4 0.02 0.190 0.022

None nocode 0.02 0.081 0.020

None qbittorrent 0.24 0.369 0.243

None termite 0.32 0.436 0.318

Read clang4 0.33 1.242 0.401

Read nocode 0.35 1.172 0.399

Read qbittorrent 5.57 6.852 5.559

Read termite 5.77 7.012 5.853

invoked once for each input C++ or C source file, paying much of the startup cost every time, and
there are over 17,000 such files in LLVM 4.0.1.
To quantify this effect more precisely, we measured the startup costs for a set of programs, for

the static, dynamic and allmux versions. Startup latency is also important for interactive computer
use such as launching a terminal while system is under heavy load. We repeated this with no
background I/O activity and with a background I/O load of 10 sequential readers from large files.
Table 3 shows the measured results.

The table shows that dynamically linked program versions are often far slower than their
statically linked counterparts, sometimes by an order of magnitude. The allmux versions are
virtually identical to the statically linked versions when no IO load is simulated and are slightly
slower when heavy background IO is performed (but much faster than the dynamic versions).

5.7 Software Collections

Because the benefits of allmux are highly dependent on the set of applications that is multiplexed
into each binary, we evaluated different possible scenarios that motivate different such groupings.

5.7.1 Themed Collections. First, we evaluate the effectiveness of multiplexing over collections of
software grouped by theme or purpose. As the multiplexed final output binary is a statically linked
multicall program that contains the functionality of all the input programs, it would potentially
be useful to have prepared to enable themed tasks in a self-contained and efficient manner. The
contents of each collection are listed in Appendix B.1. The results are shown in Figure 5. Statically
linked version sizes are not shown because they would be large enough that this approach does
not make sense.
The results show that both unoptimized and optimized (LTO) allmux versions are always

significantly smaller than the dynamically linked version, and the latter significantly so. The overall
reductions range from roughly 10% up to (often) 30-50%.

5.7.2 Across Versions. It is common for multiple versions of an application or library to exist on
an end-user’s system. To determine how effective multiplexing is across versions of software, we
selected a number of applications and measured their sizes across the three primary configurations:
dynamic, noopt, and opt. The software was selected from programs which already had multiple
versions present in meta-build repository we used (based on Nixpkgs), indicating the distinct
versions were considered useful and not simply an upgrade or bugfix5.

We consider examples of server, desktop, and command-line applications. We selected the
following software in each category:

5The default policy is to only have a single version.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:16 Will Dietz and Vikram Adve

0 B
5MB

10MB
15MB
20MB
25MB
30MB
35MB
40MB
45MB
50MB

● common

● compression

● edito
rs

● fs to
ols

● net m
isc

● shells

● te
rm

s
● vpns

● window m
anagers

Dynamic

NoOpt

Opt

Fig. 5. Sizes of łthemedž collections of utilities (dark pink portions represent shared libraries).

0.0 B

500.0kB

1.0MB

1.5MB

2.0MB

2.5MB

3.0MB

v2 v3 ● × 2 v2 v3 ● × 2 v3.80 v3.82 v4.0 v4.1 v4.2 ● × 5 v4.2.2 v4.4 ● × 2

bison gnugrep gnumake gnused

Dynamic

NoOpt

Opt

0 B
5MB

10MB
15MB
20MB
25MB
30MB
35MB
40MB
45MB
50MB

beta

(v0.4.17)

stable

(v0.4.16)

● × 2

qpdfview

0 B

5MB

10MB

15MB

20MB

25MB

30MB

git stable

(v0.9.9.4)

● × 2

lilyterm

0 B
1MB
2MB
3MB
4MB
5MB
6MB
7MB
8MB
9MB

10MB

mainline

(1.13.6)

stable

(1.12.2)

● × 2

nginx

Fig. 6. Multiplexing multiple versions of software together, binary sizes (dark pink represents shared libraries)

server: two versions of nginx (1.12.2, 1.13.6) representing łstablež and łmainlinež versions.

desktop: stable and latest git variants of a pdf viewer, qpdfview, and graphical terminal emulator,
lilyterm.

command-line: for compatibility reasons it is often useful to have multiple versions (or a specific
version) of utilities such as the ones included here: bison, gnugrep, gnumake, and gnused.

. The results for these applications are shown in Figure 6. For all of these applications, multiplex-
ing significantly reduces binary size individually and even more so when applied across multiple
versions. Notice that the sizes of the multiplexed programs with two or more versions are not much
larger than those with a single version, whereas for the baseline (dynamically linked) programs,
the shared libraries stay fixed (lower portions of the bars) but the application sizes (upper portions)
are simply the sum of the individual versions. By exposing shared code to optimizations (opt), size
is further reduced; in many cases, the result is even smaller than the size of the dynamic libraries
alone (without the executables in question).
Future work on function-level deduplication techniques are likely to be especially effective for

these experiments, as discussed briefly in Section 6.2.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:17

5.8 All the Memcached Versions

An unusual and ambitious idea is to combine all available versions of a given application or library

into a single multiplexed executable and ship that to all end-user systems! If there is substantial
common code across versions, this may not be as impractical as it sounds, whereas today, it’s
something that simply would not be practical at all because of increased binary size. This is also
useful for answering questions about the effectiveness of traditional compiler optimizations in
taking advantage of highly redundant code.

We evaluated this idea on all 40 versions of memcached available at time ofwriting.Wemultiplexed
together N of these versions in chronological order, up to and including N = 40. The sizes of the
resulting programs, as well as comparisons to the dynamically linked equivalents, are shown in
Figure 7.
The key point we see in the figure is that the size of the single, unified binary (Opt) with all 40

versions is only about 3x the size of the dynamically linked binary containing only one application
version. In fact, the multiplexed binary can hold over 16 complete, fully statically linked versions
of memcached in the same size as the single, dynamically linked version!

0 B
1MB
2MB
3MB
4MB
5MB
6MB
7MB

 2 5 10 15 20 25 30 35 40

Number of memcached versions included

Dynamic

NoOpt

Opt

Fig. 7. Up to 40 Versions of Memcached at Once: Binary Sizes

Importance of Library Deduplication. To demonstrate the impact of not performing library
deduplication we repeated the memcached multiplexing experiment above without using library
deduplication. A comparison of the binary sizes produced is shown in Figure 8 with (on the left) and
without (on the right) library deduplication enabled. As shownwhen not using library deduplication
the multiplexed binaries can become larger than the dynamically linked equivalents.

5.9 Summary and Discussion

In all cases, multiplexed applications are smaller in size, use less memory, and start up faster than
their dynamically linked equivalents, often with quite large improvements. Moreover, they are fully
self-contained and require no external dependencies, or dynamic loading functionality. It is also
worth noting that although the benefits of multiplexing depend on the chosen set of applications
to multiplex, every case we have examined ś including a very large number of widely used software
packages ś shows benefits, and these are often substantial.

It is instructive to compare these results qualitatively with those reported for Slinky. The major
advantage of Slinky is that it can deduplicate arbitrary pages across arbitrary sets of applications,
without predetermining groups to optimize, as with Allmux. In practice, we expect the benefits

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:18 Will Dietz and Vikram Adve

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 5 10 15 20 25 30 35 40

Number of memcached versions included

With Library Deduplication

NoOpt (GeoMean: 0.66)

Opt (GeoMean: 0.482)

Dynamically Linked (line at y=1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 5 10 15 20 25 30 35 40

Number of memcached versions included

Without Library Deduplication

NoOpt (GeoMean: 1.026)

Opt (GeoMean: 0.807)

Dynamically Linked (line at y=1)

Fig. 8. Multiplexing up to 40 versions of Memcached, Relative to aggregate size of dynamically linked versions.
Dashed lines show geometric mean reductions for Opt and NoOpt cases.

are orthogonal and the two could be combined for the best outcomes. In particular, Slinky results
in larger code sizes than dynamically linked libraries (reported to be 20% higher), and they incur
a non-trivial load-time penalty when programs start up. Also, Slinky cannot take advantage of
code sharing at a finer granularity than individual pages (e.g., for redundant functions), or in cases
where identical code exists but is not identically page-aligned, whereas allmux works ś or can
work ś in both these cases. For example, the deduplication for multiple versions of software is
less likely to work with Slinky because ensuring identical page alignments is more difficult for
arbitrary code than for dynamic libraries (which are the main focus of Slinky). From a deployment
perspective, our system does not require changes to the OS kernel, system linker or loader, but we
do require changes to the compiler and Slinky doesn’t.

6 DISCUSSION

6.1 Limitations

The Software Multiplexing approach has some limitations. First, as discussed in the Introduction, it
requires ahead-of-time selection and processing of collections of programs, and is not well-suited
for sharing code across dynamically changing collections of applications. A closely related weakness
is that the sharing benefits of multiplexing are confined to the set of applications combined in
each package: arbitrary applications cannot share libraries. Another related weakness is that the
multiplexed sets are likely to be the same for all or most users, and would not be easy to customize
for different systems with different user requirements. A major improvement that addresses many of
these problems would be to allow software ś including multiplexed applications ś to be distributed
in IR form (e.g., as allexes), so that new applications and libraries could be added to a multiplexed
program in the field. This would also enable per-system customization of multiplexed packages.

Second, our approach disallows (or limits the benefits of) updating shared libraries. This can slow
down the distribution of bug fixes or security patches through libraries, for example. Some large
enterprises like Google compile and distribute a lot of their software statically linked, indicating
that this issue may not be of importance to them. Interestingly, distributing software in IR form
would mitigate this problem as well, because a new library version could be multiplexed in with
other components in a package on the end-user’s system.
Third, our approach disables explicit symbol lookup and other forms of process introspection

such as the use of dlsym, dlopen, and others. These features are infrequently used and are rarely

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:19

important; for example we discovered that seemingly benign programs such as gnumake, bash,
and gawk all have functionality enabled by default that allows for loading arbitrary native code. In
future work we plan to optionally support such introspection, as at least basic support for dlsym
would not be overly difficult. We originally expected to find this a more serious limitation than it
has proven in practice.

6.2 Opportunities

Finer-grain Code Deduplication: So far, allmux only eliminates duplicate copies of libraries shared
by two or more applications that are muxed together. Significant additional code duplication could
be eliminated by identifying other duplicated fragments of code, e.g., functions or smaller code
regions. LLVM lacks a pass to identify identical functions or code fragments, but adding that is one of
our goals for the near future. Several previous papers have presented sophisticated program analysis
techniques to identify duplicate code fragments within programs at various granularities, ranging
from functions down to a variety of small code regions [De Bus et al. 2003; De Sutter et al. 2005,
2003; Edler von Koch et al. 2014; Johnson 2004]. They all focused on individual applications, and
we hope to see bigger benefits when applying some subset of those techniques across multiplexed
applications and their libraries.

Optimizations Across Novel Software Boundaries: Another opportunity is that a multiplexed
program exposes much more code to optimizations, including applications together with their
shared libraries, and even multiple related applications. This could enable new optimization
opportunities, e.g., inlining code from shared libraries into application-level callers, or (when
a set of locally communicating programs are multiplexed together [Dietz et al. 2015]) optimizing
across the communication boundaries between those programs by analyzing and transforming the
programs collectively.

6.3 Security

A common misunderstanding is that software multiplexing exposes all programs in a multicall
binary to the vulnerabilities of other programs. In actuality, the only code paths exercised for a
program are those that already existed in the original, separate version; any code from some other
program in the set will not be executed in the same process at all!
The only way security could be harmed is because it’s likely that a significant amount of code

not originally included in a program is now part of its executable code. This may allow more
opportunities for code reuse attacks, such as composing gadgets for Return-oriented Programming
(ROP). Except for small programs, this situation is unlikely to be much worse than the original. In
the future we plan to address this by modifying the generated dispatch main to mark unrelated
code as neither readable nor executable, similar to what is currently done by the runtime loader.
On the other hand, eliminating the ability to load code dynamically can significantly improve

software security, by preventing attacks such as the recent Samba exploit [MITRE Corporation
2017]. It also makes it harder to create attacks through improper updates to dynamic libraries.

7 RELATED

The problems addressed by our work are long-standing issues that have been addressed in a variety
of ways in the past. We focus here on the most relevant related work, which falls into two broad
categories: reducing dynamic linking overheads; and reducing code duplication.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:20 Will Dietz and Vikram Adve

7.1 Reducing Dynamic Linking Overheads

To reduce the cost of dynamic linking, a number of solutions have been developed, some of which
are in use today. One of the earliest, OMOS server [Orr et al. 1993] describes a novel shared library
implementation that speeds up dynamic linking by caching executables and libraries after symbol
resolution and relocation. SpringOS [Nelson and Hamilton 1993] achieves a similar caching effect for
applications and shared libraries by caching them after applications exit. Red Hat’s prelink [Jelinek
2003] tool precomputes relocation information and address assignment at link time instead of
doing these at run time. Later work [Yoon et al. 2014] extends this to allow use of Address Space
Layout Randomization (ASLR). Prelinking and Preloading [Jung et al. 2007] extends this technique
to also preload a predetermined set of shared libraries on embedded systems. Software Multiplexing
achieves all these overhead reductions (and more), but also obtains the full benefits of static linking,
while preserving the space savings of dynamic linking.

IRIX shared libraries from SGI used three techniques to mitigate negative impact of shared
libraries: optimizations to reduce indirect references, a quick start scheme similar to prelinking,
and layout optimization for procedure locality [Ho et al. 1995]. The latter is orthogonal to our
work, while the first two achieve only a part of the benefits of Software Multiplexing, similar to
prelinking.
Recent work [Agrawal et al. 2015] has even proposed hardware support to reduce dynamic

linking overheads, focusing on the indirect function calls but not on initial startup overheads (they
report łup to 4%ž speedups with the approach).

Finally, a number of current and past tools [CryoPID 2006; Reznic 2016, 2018; scrut 2003] work
by combining dynamically linked executables into a statically linked single-file equivalent. These
tools rely on application checkpointing techniques, creating a snapshot of the program early in its
execution for replay later. Similarly freezing a dynamically linked application is sometimes part
of checkpoint-restart solutions such as MCR [Giuffrida et al. 2017]. None of the tools are able to
remove unused code from dynamic objects, which yields substantial code size reduction benefits
(e.g., upper chart in Figure 9 or N=1 case for memcached in Figure 7). These tools have the benefit
that they do not require compiler support. A serious concern, however, is that these tools must
support and emulate complicated semantics of binary formats, whereas Allmux is better able to
reason about high-level intent instead of low-level implementation details.

7.2 Reducing Code Duplication

There have been both compiler and system-level solutions to eliminating duplicated code in
applications and systems. Shared libraries ś which can be static or dynamic ś were invented mainly
to address this problem [Levine 1999], and are widely used. Position-independent code (PIC) was
invented to enable more flexible code layout, including dynamic linking. Operating systems, linkers,
loaders and compilers all have evolved to support these mechanisms, but current practice suffers
from all the widely known tradeoffs [Levine 1999] between static and shared libraries described in
the Introduction.
A few systems explicitly try to reduce or eliminate these tradeoffs. VMWare ESX server used

a hashing technique to identify memory pages with identical contents [Waldspurger 2002] and
share such pages between virtual machine instances on a single host. Kernel Same-page Merging
(KSM) [KSM 2009] modifies the Linux kernel to scan through main memory and find duplicate
memory pages between processes; such pages are then mapped into multiple process address spaces
and marked copy-on-write to detect page modifications. This technique has also been shown to be
especially effective at increasing memory sharing between VM instances. Such approaches do not
address offline code size, do not reduce dynamic linking complications and startup overheads, and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:21

do not enable better compiler optimizations, all of which are achieved by either static linking or
Software Multiplexing.

Slinky [Collberg et al. 2005] is perhaps the most effective previous solution, and is discussed in
Section 1 and Section 5.9. In comparison, Software Multiplexing achieves better code size reduction
and lower overheads, as discussed in Section 5.9, and does not require changes to the OS kernel,
system linker or loader, but does require changes to the compiler while Slinky doesn’t.

8 CONCLUSIONS

We have presented a compiler approach called Software Multiplexing that combines the code size
and sharing benefits of dynamic linking and the benefits in code size, fast startup, more efficient
execution, and better cross-module compiler optimization enabled by static linking. Our results
show that our implementation, allmux, achieves smaller startup times than dynamically linked
program versions with far smaller code sizes and memory usage than statically linked versions.
Moreover, Software Multiplexing opens up new opportunities for novel future compiler research,
including fine-grain code deduplication across application boundaries, and optimizations across
non-traditional boundaries, such as application/shared-library and application/application.

A ADDITIONAL RESULTS

A.1 Impact of Multiplexing on Compression

Table 4. Comparing XZ Compression of Binaries

Name
Dynamic Allmux Opt Allmux

Bins Size XZ’d Ratio Size XZ’d Ratio /Native

allvm-tools 10 46.6 MB 10.1 MB 4.6 x 33.1 MB 8.2 MB 4.0 x 0.87 x

cmake-28-36-38 9 67.1 MB 10.9 MB 6.2 x 58.6 MB 10.2 MB 5.7 x 0.93 x

• compression 24 10.7 MB 3.2 MB 3.3 x 5.9 MB 2.0 MB 2.9 x 0.88 x

• fs tools 166 21.5 MB 4.9 MB 4.4 x 12.9 MB 4.0 MB 3.2 x 0.73 x

git 16 31.4 MB 5.2 MB 6.1 x 15.3 MB 3.6 MB 4.2 x 0.69 x

• gnumake × 5 5 1.9 MB 0.6 MB 3.0 x 1.1 MB 0.3 MB 3.4 x 1.16 x

mkvtoolnix-cli 4 23.1 MB 4.3 MB 5.4 x 16.7 MB 3.4 MB 4.9 x 0.90 x

• qt-apps 15 121.8 MB 33.3 MB 3.7 x 99.6 MB 28.7 MB 3.5 x 0.95 x

radare2 10 66.5 MB 13.1 MB 5.1 x 46.4 MB 4.4 MB 10.5 x 2.07 x

• shells 6 8.1 MB 2.6 MB 3.1 x 6.5 MB 2.2 MB 3.0 x 0.94 x

snowman 2 31.8 MB 8.6 MB 3.7 x 23.6 MB 6.6 MB 3.6 x 0.96 x

• terms 8 40.4 MB 11.1 MB 3.6 x 27.3 MB 7.6 MB 3.6 x 0.99 x

• gvim+qvim 2 54.5 MB 16.9 MB 3.2 x 41.8 MB 13.2 MB 3.2 x 0.99 x

GeoMean 4.1 x 4.0 x 0.97 x

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:22 Will Dietz and Vikram Adve

A.2 Binary Sizes for Various Software

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

2
0

4
8

-i
n

-t
e

rm
in

a
l

a
ri

a
2

b
a

sh

b
lo

a
ty

cu
rl

d
a

rk
h

tt
p

d

d
a

sh

d
h

cp
cd

d
iff

p
d

f

e
p

d
fv

ie
w

e
xi

v2

g
a

w
k

g
n

u
g

re
p

g
n

u
se

d

g
n

u
ta

r

g
tk

p
e

rf

h
o

st

h
to

p

jn
e

tt
o

p

jw
m

li
ly

te
rm

-g
it

li
n

k
s2 ll
d

ly
n

x

m
e

m
ca

ch
e

d
-1

-4
-3

9

m
e

ri
to

u
s

n
in

ja

n
o

d
e

js

o
p

e
n

ss
l

o
p

e
n

ty
ri

a
n

p
e

k
w

m

p
o

vr
a

y

p
q

iv

p
ro

to
b

u
f

q
p

d
fv

ie
w

ra
tp

o
is

o
n

rd
e

sk
to

p

sa
k

u
ra

sa
w

fi
sh

so
la

ru
s

sq
li

te

sy
lp

h
e

e
d

tc
sh

te
rm

it
e

tm
u

x

w
g

e
t

xb
o

a
rd

xc
lo

ck z3

zn
c

NoOpt (GeoMean: 0.687)

Opt (GeoMean: 0.52)

Dynamically Linked (line at y=1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

g
h

o
st

sc
ri

p
tX

li
b

in
p

u
t

li
g

h
tt

p
d

m
in

is
a

t
p

id
g

in
sn

o
w

m
a

n
st

p
sv

f-
4 v8

vi
m

●
g

vi
m

+
q

vi
m

g
vi

m
w

e
sn

o
th

-d
e

v
xf

d
e

sk
to

p
xt

e
rm

cm
a

ke
-2

-8
cm

a
ke

-3
-6

d
o

sf
st

o
o

ls
fi

n
d

u
ti

ls
fi

sh
n

m
a

p
o

p
e

n
d

h
t

rx
vt

-u
n

ic
o

d
e

d
iff

u
ti

ls
fr

e
e

ci
v-

g
tk

fr
e

e
rd

p
h

a
rf

b
u

zz
m

k
vt

o
o

ln
ix

-c
li

n
sd

yi
ce

s
fl

u
xb

o
x

●
g

n
u

m
a

ke
 ×

 5
●

sh
e

ll
s

tr
a

n
sm

is
si

o
n

h
u

n
sp

e
ll

fl
it

e
o

p
e

n
ss

h
●

te
rm

s
cm

a
ke

-2
8

-3
6

-3
8

d
p

k
g

p
u

re
-ft

p
d

a
ll

vm
-t

o
o

ls
ra

d
a

re
2

xp
d

f
im

a
g

e
m

a
g

ic
k

in
e

tu
ti

ls
sv

n
 (

cl
ie

n
t)

e
p

ro
ve

r
●

b
a

si
c

X
 u

ti
ls

g
n

u
p

g
xa

p
ia

n
●

q
t-

a
p

p
s

g
it

p
ro

cp
s-

n
g

xe
rc

e
sc

b
in

u
ti

ls
e

2
fs

p
ro

g
s

g
e

tt
e

xt
●

co
m

p
re

ss
io

n
cu

p
s

g
ra

p
h

vi
z

p
ro

ve
r9

sg
tp

u
zz

le
s

g
e

co
d

e
-3

ll
vm

4
ll

vm
5

te
te

x
ll

vm
4

a
ll

ll
vm

5
a

ll
u

ti
ll

in
u

x
co

re
u

ti
ls

te
xl

iv
e

-b
in

-c
o

re
●

fs
 t

o
o

ls

NoOpt (GeoMean: 0.744)

Opt (GeoMean: 0.608)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 6 6 7 8 8 8 9 9 9 1
0

1
0

1
0

1
1

1
1

1
1

1
2

1
3

1
3

1
3

1
5

1
6

1
6

1
6

1
7

1
7

1
9

2
4

2
5

2
7

3
3

3
9

4
8

5
0

5
2

5
9

6
5

6
8

1
0

2
1

0
5

1
2

7
1

6
6

Dynamically Linked (line at y=1)

Fig. 9. Relative binary size of multiplexing vs dynamically linking, single programs (top) and multiple-program
(bottom) sets. Program count shown when greater than one.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:23

0 B

20MB

40MB

60MB

80MB

100MB

120MB

140MB

●
q

t-
a

p
p

s
ll

vm
5

a
ll

ll
vm

4
a

ll
ll

vm
5

ll
vm

4
cm

a
ke

-2
8

-3
6

-3
8

ra
d

a
re

2 v8
w

e
sn

o
th

-d
e

v
●

g
vi

m
+

q
vi

m
a

ll
vm

-t
o

o
ls ll
d

xp
d

f
q

p
d

fv
ie

w
●

te
rm

s
fr

e
e

ci
v-

g
tk

e
p

d
fv

ie
w

p
q

iv
d

iff
p

d
f

sa
k

u
ra

te
rm

it
e

g
h

o
st

sc
ri

p
tX

p
id

g
in

g
ra

p
h

vi
z

g
vi

m
im

a
g

e
m

a
g

ic
k

sn
o

w
m

a
n

b
in

u
ti

ls
fl

it
e

g
it

sg
tp

u
zz

le
s

n
o

d
e

js
cm

a
ke

-3
-6

sy
lp

h
e

e
d

te
xl

iv
e

-b
in

-c
o

re
li

n
k

s2
xb

o
a

rd
xf

d
e

sk
to

p
li

ly
te

rm
-g

it z3
sv

f-
4

g
tk

p
e

rf
cm

a
ke

-2
-8

m
k

vt
o

o
ln

ix
-c

li
g

e
co

d
e

-3
●

fs
 t

o
o

ls
jw

m
fr

e
e

rd
p

so
la

ru
s

g
n

u
p

g
sv

n
 (

cl
ie

n
t)

rx
vt

-u
n

ic
o

d
e

sa
w

fi
sh

m
e

ri
to

u
s

te
te

x
p

ro
ve

r9
h

a
rf

b
u

zz
a

ri
a

2
●

co
m

p
re

ss
io

n
tr

a
n

sm
is

si
o

n
n

m
a

p
fl

u
xb

o
x

Larger than Median

(Dynamic ≥ 8971952)
Dynamic

NoOpt

Opt

0 B

1MB

2MB

3MB

4MB

5MB

6MB

7MB

8MB

9MB

o
p

e
n

d
h

t
p

o
vr

a
y

e
p

ro
ve

r
h

o
st

●
sh

e
ll

s
co

re
u

ti
ls

o
p

e
n

ty
ri

a
n

xe
rc

e
sc

cu
p

s
fi

sh
p

e
k

w
m

li
b

in
p

u
t

xt
e

rm
w

g
e

t
u

ti
ll

in
u

x
e

xi
v2 zn

c
o

p
e

n
ss

h
yi

ce
s

st
p

xc
lo

ck
ly

n
x

ra
tp

o
is

o
n

rd
e

sk
to

p
n

sd
xa

p
ia

n
g

e
tt

e
xt

vi
m

p
ro

to
b

u
f

cu
rl

jn
e

tt
o

p
o

p
e

n
ss

l
li

g
h

tt
p

d
●

b
a

si
c

X
 u

ti
ls

p
u

re
-ft

p
d

h
u

n
sp

e
ll

e
2

fs
p

ro
g

s
b

lo
a

ty
m

in
is

a
t

n
in

ja
sq

li
te

d
p

k
g

g
n

u
g

re
p

in
e

tu
ti

ls
tm

u
x

p
ro

cp
s-

n
g

d
o

sf
st

o
o

ls
●

g
n

u
m

a
ke

 ×
 5

tc
sh

b
a

sh
h

to
p

g
n

u
ta

r
m

e
m

ca
ch

e
d

-1
-4

-3
9

g
a

w
k

fi
n

d
u

ti
ls

2
0

4
8

-i
n

-t
e

rm
in

a
l

d
iff

u
ti

ls
d

h
cp

cd
g

n
u

se
d

d
a

sh
d

a
rk

h
tt

p
d

Smaller than Median

(Dynamic < 8971952)
Dynamic

NoOpt

Opt

Fig. 10. Allmux vs Dynamically Linked: Absolute Binary sizes for same data shown in Figure 9. Graph
partitioned at median binary size.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

154:24 Will Dietz and Vikram Adve

B THEMED COLLECTIONS

B.1 List of Packages in Each Collection

common: bash, bzip2, coreutils, diffutils, findutils, gawk, gnugrep, gnumake, gnupatch, gnused,
gnutar, gzip, xz

compress: brotli, bzip2, gnutar, gzip, lrzip, lz4, lzip, rzip, unzip, xar, xz, zip, zstd

editors: bvi, bviplus, ed, elvis, flpsed, ht, joe, kakoune, moe, nano, ne, nvi, vim, wily, zile

fs tools: 9pfs, btrfs-progs, cdrkit, dosfstools, e2fsprogs, e2tools, exfat, mtools, ntfs3g, squashfsTools,
utillinuxMinimal, xorriso

net misc: adns, aircrack-ng, aria2, arp-scan, chrony, curl, dhcpcd, dhcping, fping, httping, iperf,
iproute, iputils, iw, jnettop, jwhois, miniupnpc, netcat-gnu, netperf, netrw, nettools, ngrep, nmap,
ntp, openconnect, openssh, mosh, socat, tcptraceroute, traceroute, wget, wpa_supplicant

shells: bash, dash, es, fish, tcsh, zsh

vpns: openconnect, openfortivpn, openvpn, vpnc

windowmanagers: 2bwm, bspwm, cwm, dwm, evilwm, fluxbox, icewm, jwm, lemonbar, matchbox,
oroborus, pekwm, ratpoison, rofi, sxhkd, tabbed

B.2 Binary Sizes for łLogicž Collection

100kB

1MB

10MB

100MB

1GB

abc-verifier
aiger avy

cryptominisat
cvc4

eprover lci
lean

minisat
picosat

prover9 stp
veriT

verilator
yices z3

● logic

Dynamic

NoOpt

Opt

Fig. 11. Binary Sizes for Logic-related programs (y-log)

ACKNOWLEDGMENTS

This material is based upon work supported by the Office of Naval Research under Grant Nos. Navy
N00014-4-1-0525 and Navy N00014-17-1-2996.

REFERENCES

Vikram Adve, Will Dietz, et al. 2016. ALLVM Project. http://allvm.org

VarunAgrawal, AbhiroopDabral, Tapti Palit, Yongming Shen, andMichael Ferdman. 2015. Architectural Support for Dynamic

Linking. In Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’15). ACM, New York, NY, USA, 691ś702. https://doi.org/10.1145/2694344.2694392

Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not What You eXecute. ACM Trans. Program.

Lang. Syst. 32, 6, Article 23 (Aug. 2010), 84 pages. https://doi.org/10.1145/1749608.1749612

Christian S Collberg, John H Hartman, Sridivya Babu, and Sharath K Udupa. 2004. Slinky - Static Linking Reloaded.

Retrieved 2018 from http://slinky.cs.arizona.edu/

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

http://allvm.org
https://doi.org/10.1145/2694344.2694392
https://doi.org/10.1145/1749608.1749612
http://slinky.cs.arizona.edu/

Software Multiplexing: Share Your Libraries and Statically Link Them Too 154:25

Christian S Collberg, John H Hartman, Sridivya Babu, and Sharath K Udupa. 2005. SLINKY: Static Linking Reloaded.. In

USENIX Annual Technical Conference, General Track. 309ś322.

CryoPID 2006. CryoPID. http://freecode.com/projects/cryopid/. Original homepage is no longer available.

Bruno De Bus, Daniel Kästner, Dominique Chanet, Ludo Van Put, and Bjorn De Sutter. 2003. Post-pass Compaction

Techniques. Commun. ACM 46, 8 (Aug. 2003), 41ś46. https://doi.org/10.1145/859670.859696

Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. 2005. Link-time Binary Rewriting Techniques for Program

Compaction. ACM Trans. Program. Lang. Syst. 27, 5 (Sept. 2005), 882ś945. https://doi.org/10.1145/1086642.1086645

Bjorn De Sutter, Hans Vandierendonck, Bruno De Bus, and Koen De Bosschere. 2003. On the Side-effects of Code Abstraction.

In Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers and Tools for Embedded Systems (LCTES

’03). ACM, New York, NY, USA, 244ś253. https://doi.org/10.1145/780732.780766

Will Dietz, Joshua Cranmer, Nathan Dautenhahn, and Vikram Adve. 2015. Slipstream: Automatic Interprocess Communica-

tion Optimization. In 2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Association, Santa Clara, CA,

431ś443. https://www.usenix.org/conference/atc15/technical-session/presentation/dietz

Ulrich Drepper. 2011. How ToWrite Shared Libraries. Retrieved July 2017 from http://people.redhat.com/drepper/dsohowto.

pdf

Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and Anshuman Dasgupta. 2014. Exploiting Function Similarity

for Code Size Reduction. In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for

Embedded Systems (LCTES ’14). ACM, New York, NY, USA, 85ś94. https://doi.org/10.1145/2597809.2597811

Cristiano Giuffrida, Clin Iorgulescu, Giordano Tamburrelli, and Andrew S. Tanenbaum. 2017. Automating Live Update for

Generic Server Programs. IEEE Trans. Softw. Eng. 43, 3 (March 2017), 207ś225. https://doi.org/10.1109/TSE.2016.2584066

W. Wilson Ho, Wei-Chau Chang, and Lilian H. Leung. 1995. Optimizing the Performance of Dynamically-linked Programs.

In Proceedings of the USENIX 1995 Technical Conference Proceedings (TCON’95). USENIX Association, Berkeley, CA, USA,

19ś19. http://dl.acm.org/citation.cfm?id=1267411.1267430

Blanchette Jasmin. 2008. C++ GUI Programming with Qt4, 2/e. Pearson Education India.

Jakub Jelinek. 2003. Prelink. Technical Report. Technical report, Red Hat, Inc., 2004. available at http://people. redhat.

com/jakub/prelink. pdf.

Neil E Johnson. 2004. Code size optimization for embedded processors. Technical Report. University of Cambridge, Computer

Laboratory.

Changhee Jung, Duk-Kyun Woo, Kanghee Kim, and Sung-Soo Lim. 2007. Performance Characterization of Prelinking and

Preloading for Embedded Systems. In Proceedings of the 7th ACM &Amp; IEEE International Conference on Embedded

Software (EMSOFT ’07). ACM, New York, NY, USA, 213ś220. https://doi.org/10.1145/1289927.1289961

KSM 2009. Increasing memory density by using KSM. In Proceedings of the Linux Symposium. 19ś28.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

In Proc. Conf. on Code Generation and Optimization. San Jose, CA, USA, 75ś88.

John R. Levine. 1999. Linkers and Loaders (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Xiaozhu Meng and Barton P. Miller. 2016. Binary Code is Not Easy. In Proceedings of the 25th International Symposium on

Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA, 24ś35. https://doi.org/10.1145/2931037.2931047

MITRE Corporation. 2017. CVE-2017-7494. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7494

Matthew Moore. 2017. Distroless Docker: Containerizing Apps, Not VMs. (2017). https://swampup2017.sched.com/event/

A6CW/distroless-docker-containerizing-apps-not-vms SwampUP.

Michael N. Nelson and Graham Hamilton. 1993. High Performance Dynamic Linking Through Caching. In Proceedings

of the USENIX Summer 1993 Technical Conference - Volume 1 (Usenix-stc’93). USENIX Association, Berkeley, CA, USA,

Article 17, 14 pages. http://dl.acm.org/citation.cfm?id=1361453.1361470

openSUSE 2017. openSUSE:Shared library packaging policy. Retrieved 2018 from https://en.opensuse.org/openSUSE:

Shared_library_packaging_policy

Douglas B. Orr, Jay Lepreau, J. Bonn, and R. Mecklenburg. 1993. Fast and Flexible Shared Libraries. In Proceedings of the

Summer 1993 USENIX Conference, Cincinnati, OH, USA, June 21-25, 1993. 237ś252.

PSS 2016. Proportional set size. Retrieved 2018 from https://en.wikipedia.org/wiki/Proportional_set_size

Valery Reznic. 2016. ELF STATIFIER MAIN PAGE. Retrieved 2018 from http://statifier.sourceforge.net/

Valery Reznic. 2018. Ermine: Linux Portable Application Creator. http://www.magicermine.com/.

Andreas Schwab. 2005. Re: Statically linking against a shared library. https://sourceware.org/ml/binutils/2005-03/msg00350.

html Binutils mailing list.

scrut. 2003. reducebind.c - dynamic to static binary conversion utility. Retrieved 2018 from https://dl.packetstormsecurity.

net/groups/teso/reducebind.c

Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX Server. SIGOPS Oper. Syst. Rev. 36, SI (Dec.

2002), 181ś194. https://doi.org/10.1145/844128.844146

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

http://freecode.com/projects/cryopid/
https://doi.org/10.1145/859670.859696
https://doi.org/10.1145/1086642.1086645
https://doi.org/10.1145/780732.780766
https://www.usenix.org/conference/atc15/technical-session/presentation/dietz
http://people.redhat.com/drepper/dsohowto.pdf
http://people.redhat.com/drepper/dsohowto.pdf
https://doi.org/10.1145/2597809.2597811
https://doi.org/10.1109/TSE.2016.2584066
http://dl.acm.org/citation.cfm?id=1267411.1267430
https://doi.org/10.1145/1289927.1289961
https://doi.org/10.1145/2931037.2931047
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7494
https://swampup2017.sched.com/event/A6CW/distroless-docker-containerizing-apps-not-vms
https://swampup2017.sched.com/event/A6CW/distroless-docker-containerizing-apps-not-vms
http://dl.acm.org/citation.cfm?id=1361453.1361470
https://en.opensuse.org/openSUSE:Shared_library_packaging_policy
https://en.opensuse.org/openSUSE:Shared_library_packaging_policy
https://en.wikipedia.org/wiki/Proportional_set_size
http://statifier.sourceforge.net/
http://www.magicermine.com/
https://sourceware.org/ml/binutils/2005-03/msg00350.html
https://sourceware.org/ml/binutils/2005-03/msg00350.html
https://dl.packetstormsecurity.net/groups/teso/reducebind.c
https://dl.packetstormsecurity.net/groups/teso/reducebind.c
https://doi.org/10.1145/844128.844146

154:26 Will Dietz and Vikram Adve

Hyungjo Yoon, Changwoo Min, and Young Ik Eom. 2014. Dynamic-prelink: An Enhanced Prelinking Mechanism without

Modifying Shared Libraries. In Proceedings of the International Conference on Embedded Systems and Applications (ESA).

The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing

(WorldComp), 1.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 154. Publication date: November 2018.

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Existing Solutions
	1.3 Overview of Software Multiplexing
	1.4 Implementation and Results

	2 Background
	2.1 Multicall
	2.2 Compiler Requirements and ALLVM

	3 Generating Multicall Programs
	3.1 Allmux Basic
	3.2 Multiplexing with Library Deduplication

	4 Statically Linking Shared Libraries
	4.1 Insight
	4.2 Visibility
	4.3 Other Details

	5 Evaluation
	5.1 Goals and Software Variants
	5.2 Workloads Used
	5.3 Experimental Hardware
	5.4 Qt Applications
	5.5 Compiler Performance
	5.6 Startup Latency vs I/O Load
	5.7 Software Collections
	5.8 All the Memcached Versions
	5.9 Summary and Discussion

	6 Discussion
	6.1 Limitations
	6.2 Opportunities
	6.3 Security

	7 Related
	7.1 Reducing Dynamic Linking Overheads
	7.2 Reducing Code Duplication

	8 Conclusions
	A Additional Results
	A.1 Impact of Multiplexing on Compression
	A.2 Binary Sizes for Various Software

	B Themed Collections
	B.1 List of Packages in Each Collection
	B.2 Binary Sizes for "Logic" Collection

	Acknowledgments
	References

